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Abstract. The 1D electric field and heat-conduction equations are solved for a slab where the dielectric properties
vary spatially in the sample. Series solutions to the electric field are obtained for systems where the spatial variation
in the dielectric properties can be expressed as polynomials. The series solution is used to obtain electric-field
distributions for a binary oil-water system where the dielectric properties are assumed to vary linearly within
the sample. Using the finite-element method temperature distributions are computed in a three-phase oil, water
and rock system where the dielectric properties vary due to the changing oil saturation in the rock. Temperature
distributions predicted using a linear variation in the dielectric properties are compared with those obtained using
the exact nonlinear variation.
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1. Introduction

Electromagnetic radiation with frequencies ranging between 300 MHz to 300 GHz are re-
ferred to as microwave radiation. Applications where microwave energy is used range from
more common applications such as heating and thawing of food to more specialized materials
processing situations such as ceramic sintering. Recently there has been much debate about
the potential uses of electromagnetic energy for decontamination of soils and enhanced oil re-
covery. In the case of oil recovery preheating the oil-bearing rock formation would potentially
lower the oil viscosity and enhance the production of oil [1]. An alternate method is to radiate
the water while the displacement process occurs in the oil-bearing formation [2]. The heated
water would then transfer heat to the oil, thereby enhancing its recovery.

During immiscible displacement, where water is used to displace oil in a porous rock, a
front is established [3, Chapter 6]. The front is usually characterized by the oil saturation
which varies in a nonlinear fashion from a region of pure water to a region of pure oil as
shown schematically in Figure 1. We are interested in studying the microwave heating of an
oil-water mixture contained in a porous rock formation after the displacement front has been
established. Microwaves are assumed to be incident from the water side as shown in Figure 1.
A complete model would involve the microwave source and the computational domain would
then include the water, oil-water and oil regions as shown in Figure 2. In this manuscript we
will analyze the single-layer situation shown in Figure 1 where the porous slab containing
oil and water is placed in free space. Once the front is established, the dielectric properties
of the oil-water region are spatially dependent functions, where the functional dependence is
due to the changing oil saturation in the medium. We will illustrate that the problem reduces
to solving the electric-field equation with spatially varying coefficients. We develop series
solutions for the electric field, assuming that the dielectric properties can be expressed as
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Figure 1. Schematic of single-layer system, where the medium 2 is a porous rock containing oil and water.
0 ≤ so ≤ 1, the saturation of oil is shown as well.

polynomials that span the domain. We test the series solutions with a finite-element solution
for different sample thicknesses. Temperature distributions are obtained by use of the exact
functional forms for the spatial variation of dielectric properties in the three-phase oil, water
and rock system and compared with the heating patterns with the assumption of a linear
variation in the dielectric properties, for which the series solution can be used. In addition to
studying heating patterns in the single layer situation, we also present solutions to the electric
field for the multilayer situation depicted in Figure 2.

2. Theory

2.1. ELECTRIC-FIELD EQUATIONS

Consider a slab exposed to transverse electromagnetic radiation as shown in Figure 1. We are
interested in studying the microwave power absorption and subsequent heating in the region
Z1 ≤ Z ≤ Z2, which is made up of a porous medium, within which the saturation of oil
so varies spatially as shown in Figure 1. As a result, the dielectric properties of the medium
vary in the region Z1 ≤ Z ≤ Z2, due to the spatial variation in the water saturation sw.
The saturation shown depicted in Figure 1 depicts the region around the water-oil front that
is established when water is used to displace oil from the formation. The saturation so is
defined as the volume fraction of pore space occupied with oil. Hence the water saturation
sw = 1 − so. Since oil is present in the rock formations over geological time scales, we
assume that rock is oil-wet, and oil forms the continuous phase in the two-phase oil-water
system. We further make the assumption of a quasi-steady state and study the electric field
and temperature distribution across a stationery oil-water front.

Let k1, k2(Z) and k3 represent the propagation constants in regions 1, 2 and 3, respectively
(Figure 1). Assuming that the incident radiation is a uniform plane wave, whose electric and
magnetic components lie in a plane (x − y) of uniform intensity varying only in the direction
of propagation (Z), the equation for the electric field Ex2 (assuming a time harmonic form
eiωt ) is
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d2Ex2

dZ2
+ k2

2(Z)Ex2 = 0, Z1 ≤ Z ≤ Z2, (1)

where the propagation constant

k2
2 = ω2

c2
[κ ′

2(so(Z)) + iκ ′′
2 (so(Z))] (2)

is dependent on the spatially varying dielectric properties, κ ′, the relative dielectric constant
and κ ′′, the relative dielectric loss. Here ω = 2πf , where f is the frequency of the electro-
magnetic radiation and c is the velocity of light. An equivalent expression for the propagation
constant is

k2 = 2π/λm2 + i/Dp2, (3)

where the wavelength of radiation in medium 2,
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κ ′

2
2

√√
1 +

(
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2
κ ′

2

)2 + 1

, (4)

and the penetration depth
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π
√

2κ ′
2

√√
1 +

(
κ ′′

2
κ ′

2

)2 − 1

(5)

In Equations (4) and (5), λ0 = c/f the free-space wavelength. Equation (3) is useful as it
relates the propagation constant to length scales that are important in electromagnetic heating
applications.

Since the dielectric properties in regions 1 and 2 are spatially invariant, we seek boundary
conditions at Z = Z1 and Z = Z2. Assuming a wave propagating in the positive Z direction,
we have the electric field in region 1:

Ex1 = E0eik1Z + Ae−ik1Z, (6)

and in region 3:

Ex3 = Beik3Z. (7)

The boundary conditions are obtained by evaluating the field at the required boundary and
taking a spatial derivative of the field [4]. Using this procedure, we have the boundary condi-
tions

dEx2

dZ
+ ik1Ex2 = 2ik1E0eik1Z1 at Z = Z1 (8)

and
dEx2

dZ
− ik3Ex2 = 0 at Z = Z2. (9)

The above boundary conditions are consistent with the continuity of the electric field and
its spatial derivatives at the interface. With a knowledge of the electric field intensity in the
medium, the local power absorbed in the sample is
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p(Z) = 1

2
ωε0κ

′′
2 (Z)Ex2E

∗
x2 , (10)

where ε0 is the free-space permittivity and E∗
x2 is the complex conjugate of the electric field.

The dielectric properties of the porous medium obtained, using the mixture rule for the
relative complex dielectric constant κ2 = κ ′

2 + iκ ′′
2 based on a complex conductivity model

[5], is

κ2 = κc [κd (1 + sdVd) + κc (1 − Vd) sd ]

[κc (sd + Vd) + κd (1 − Vd)]
, (11)

where κc and κd are the relative complex dielectric properties of the continuous and dispersed
phases, respectively, sd = 2 for spherical dispersions and sd = 1 for cylindrical dispersions.
For a two-phase system consisting of oil and water the dielectric properties are obtained
assuming that oil is the continuous phase. For the three-phase system of oil, water and rock
we first estimate the dielectric properties of the oil-water phase using Equation (11) assuming
that oil is the continuous phase. To obtain the dielectric properties of the three-phase system
the mixture rule is once again applied with rock as the continuous phase. For the dielectric
properties of the oil-water mixture, Vd is the volume fraction of the dispersed phase which is
the water saturation sw = 1 − so. The functional form of so vs. Z is

so =




(Z − Z1)
2

(Z2 − Z1) (Zm − Z1)
, Z1 ≤ Z ≤ Zm

1 − (Z − Z2)
2

(Z2 − Z1) (Z2 − Zm)
, Zm ≤ Z ≤ Z2

, (12)

where Zm = (Z2 − Z1)/2 is the mid-point. The above equation for saturation has the desired
sigmoidal form [6] for the oil saturation at an idealized water-oil front [3, Chapter 6].

2.2. HEAT TRANSPORT

Assuming that heat transport occurs primarily by conduction, the unsteady-state heat-transfer
equation is,

(
ρCp

)
eff

∂T

∂t
= ∂

∂Z

(
kT ,eff

∂T

∂Z

)
+ p(Z) , (13)

where p(Z) is a volumetric source term due to microwave power absorption. Equation (13) is
solved to obtain transient temperature profiles for a sample exposed to microwave radiation.
If the porosity of the medium is φ, then the effective thermal conductivity is given by

kT ,eff = φ[sokT ,o + (1 − so)kT ,w] + (1 − φ)kT ,s, (14)

where kT ,o, kT ,w and kT ,s are the thermal conductivities of the oil, water and solid matrix,
respectively. Similarly, the effective specific heat capacity is(

ρCp

)
eff = φ[soρoCpo + (1 − so)ρwCpw] + (1 − φ)ρsCps, (15)

where ρi and Cpi represent the density and heat capacity of the ith phase, respectively.

2.3. DIMENSIONLESS FORMS

If the slab thickness Z2 − Z1 = L and Z1 = 0, then defining the dimensionless variables
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u = Ex2

E0
and z = Z

L
, (16)

we may reduce the equation for the electric field, Equation (1),

d2u

dz2
+ γ 2

2 (z)u = 0, 0 ≤ z ≤ 1 (17)

We assume that the dielectric properties can be represented as pth-order polynomials of the
following form,

κ ′
2(z) =

p∑
j=0

cj z
j and κ ′′

2 (z) =
p∑

j=0

djz
j , (18)

and the propagation constant by

γ 2
2 (z) =

p∑
j=1

αjz
j , (19)

where αj = L2ω2

c2 (cj + idj ).
If γj = kjL, the dimensionless boundary conditions are

du

dz
+ iγ1u = 2iγ1 at z = 0 (20)

and

du

dz
− iγ3u = 0 at z = 1. (21)

2.4. SERIES SOLUTION

Assume a solution of the form

u(z) =
∞∑
n=0

unz
n, 0 ≤ z ≤ 1. (22)

The series solution obtained by equating powers in Equation (17) can be expressed as

u(z) = u0

∞∑
n=0

un0z
n + u1

∞∑
n=0

un1z
n, (23)

where u0 and u1 are two constants to be evaluated by use of the boundary conditions, (20)
and (21). The recursion relationships for the coefficients un0 and un1 for polynomials of order
p = 0, 1, 2 and 3 in Equation (23) are given below:

(a) Constant (p = 0): γ 2
2 (z) = α0:

un0 = −α0un−2,0

n(n − 1)
, n ≥ 2, (24)

un1 = −α0un−2,1

n(n − 1)
, n ≥ 2, (25)
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(b) Linear (p = 1) : γ 2
2 (z) = α0 + α1z:

un0 = −α0un−2,0 − α1un−3,0

n(n − 1)
, n ≥ 3, (26)

un1 = −α0un−2,1 − α1un−3,1

n(n − 1)
, n ≥ 3, (27)

(c) Quadratic (p = 2) : γ 2
2 (z) = α0 + α1z + α2z

2:

un0 = −α0un−2,0 − α1un−3,0 − α2un−4,0

n(n − 1)
, n ≥ 4, (28)

un1 = −α0un−2,1 − α1un−3,1 − α2un−4,1

n(n − 1)
, n ≥ 4, (29)

(d) Cubic (p = 3) : γ 2
2 (z) = α0 + α1z + α2z

2 + α3z
3:

un0 = −α0un−2,0 − α1un−3,0 − α2un−4,0 − α3un−5,0

n(n − 1)
, n ≥ 5, (30)

un1 = −α0un−2,1 − α1un−3,1 − α2un−4,1 − α3un−5,1

n(n − 1)
, n ≥ 5. (31)

In general, the many term recurrence relationship [8, Chapter 23] for a pth-order polyno-
mial is

unk =
p∑

j=0

−αjun−j−2,k

n(n − 1)
, n ≥ p + 2 and k = 0, 1. (32)

The coefficients needed to evaluate the coefficients in the above expressions for p ≤ 3 are

u00 = 1, u10 = 0, u20 = −α0
2·1 , u30 = −α1

3·2 ,

u01 = 0, u11 = 1, u21 = 0, u31 = −α0
3·2 .

We next evaluate the constants uo and u1 for two different situations shown in Figures 1 and
2.

2.4.1. Single layer
Here we assume that the porous slab is surrounded by air on both sides (Figure 1), as a result
γ1 = γ3 = γ0 = ω2L2/c2. The expression for the constants u0 and u1 in Equation (22) we
obtain using the boundary conditions (20) and (21) are

u0 = 2iγ0m22

*
and u1 = −2iγ0m21

*
, (33)

where * = m11m22 − m12m21 with

m11 = S ′
0(0) + iγ0S0(0), (34.1)

m12 = S ′
1(0) + iγ0S1(0), (34.2)



A Sample Document 161

m21 = S ′
0(1) − iγ0S0(1), (34.3)

m22 = S ′
1(1) − iγ0S1(1), (34.4)

where

S0 =
∞∑
n=0

un0z
n, S1 =

∞∑
n=0

un1z
n (35)

and the primes refer to spatial derivatives with respect to z.
For p = 0, the constant property situation, the series reduces to a linear combination of

sine and cosine functions and the closed-form solution for the electric field is

u(z) = A sin γ2 z + B cos γ2 z, (36)

where

A = 2(i tan γ2 − γ02)

(γ20 + γ02) tan γ2 + 2i
(37.1)

B = 2(γ02 tan γ2 + i)

(γ20 + γ02) tan γ2 + 2i
(37.2)

where γij = γi/γj

2.4.2. Multilayer
Here we analyze the composite medium shown in Figure 2. The expressions for the electric
field in three different layers are,

u2(z) = a2eiγ2z + b2e−iγ2z, z1 < z < z2, (38.1)

u3(z) = a3S0(z) + b3S1(z), z2 < z < z3, (38.2)

u4(z) = a4eiγ4z + b4e−iγ4z, z3 < z < z4, (38.3)

u2(z) and u4(z) are the expressions for the water and oil layers, respectively, and u3(z) is the
series solution for region 3. The boundary condition at z1 = 0 for u2 is similar to Equation (20)
and the boundary condition for u4 at z4 = 1 is similar to Equation (21) with γ3 replaced with
γ5.

ul = ul+1

dul

dz
= dul+1

dz


 at zl; l = 2, 3. (39)

Using the boundary conditions and interface conditions (39) we can express the constants as

a3 = f1m22/*, (40.1)

b3 = −f1m21/*, (40.2)

a4 = u3(z3)e−iγ4z3

1 + R45e2iγ4(1−z3)
, (40.3)
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b4 = a4R45ei2γ4, (40.4)

a2 = T12 + R21b2, (40.5)

b2 = u3(z2)e−iγ2z2 − T12

R21 + e−2iγ2z2
, (40.6)

where

* = m11m22 − m12m21, (41.1)

m11 = [iγ2(
R21 − e−2iγ2z2

R21 + e−2iγ2z2
)S0(z2) − S ′

0(z2)], (41.2)

m12 = [iγ2(
R21 − e−2iγ2z2

R21 + e−2iγ2z2
)S1(z2) − S ′

1(z2)], (41.3)

m21 = [iγ4(
1 − R45e2iγ4(1−z3)

1 + R45e2iγ4(1−z3)
)S0(z3) − S ′

0(z3)], (41.4)

m22 = [iγ4(
1 − R45e2iγ4(1−z3)

1 + R45e2iγ4(1−z3)
)S1(z3) − S ′

1(z3)], (41.5)

f1 = −2iγ2T12e−iγ2z2

R21 + e−2iγ2z2
(41.6)

and the reflection and transmission coefficients are

Rij = γi − γj

γi + γj
and Tij = 2γi

γi + γj
, (42)

respectively. If both media 1 and 2 have similar dielectric properties and media 4 and 5 have
similar dielectric properties, then γ1 = γ2, γ4 = γ5, T12 = 1, R21 = 0 and R45 = 0 and the
solution in region 3 reduces to the single-layer series solution obtained earlier.

2.5. FINITE-ELEMENT SOLUTIONS

In order to study the complete heat-transfer problem coupled with the electric-field equations,
we solve the electric field and the heat-conduction equations using the Galerkin finite-element
method. In this manuscript we only analyze the single-layer situation shown in Figure 1. Since
the details of the method have been given elsewhere [4, 9] we only present the basic form of
the governing equations and some specific details. Defining the complex field intensity as
u = vx + iwx the equation for the electric fields, obtained by equating the real (vx) and
imaginary (wx) components in Equation (17) are

d2vx

dz2
+ ψvx − χwx = 0 (43)

and

d2wx

dz2
+ χvx + ψwx = 0 , (44)
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where ψ = L2ω2

c2 κ ′(so) and χ = L2ω2

c2 κ ′′(so). The boundary conditions for the real and
imaginary components from Equations (8) and (9) are:

dvx
dz

− γ0wx = 0

dwx

dz
+ γ0vx = 0


 at z = 0 (45)

and

dvx
dz

+ γ0wx = 0

dwx

dz
− γ0vx = 0


 at z = 1 . (46)

Using ρ0, Cp,0 and kT 0 as the reference thermal properties, the transient 1D heat-conduction
equation for a slab, Equation (13), is

ρCp

∂θ

∂τ
= ∂

∂z

(
kT

∂θ

∂z

)
+ P(z) , (47)

where the expression for the microwave-power term in Equation (47) is,

P(z) = L2ωε0κ
′′(so)E2

L

kT 0T0

(
v2
x + w2

x

)
(48)

and

θ = T − T∞
T0

, τ = α0t

L2
, P = pL2

kT 0 T0
, ρCp = (ρCp)eff

ρ0 Cp,0
and kT = kT ,eff

kT 0
;

h is the convection-heat-transfer coefficient, and T0 is the initial temperature of the material.
The boundary conditions are

∂θ

∂z
− Biθ = 0 at z = 0 , (49)

and

∂θ

∂z
+ Biθ = 0 at z = 1 , (50)

where Bi = hL
kT ,eff

and the initial condition

θ (τ = 0) = T0 − T∞
T0

for 0 ≤ z ≤ 1. (51)

For a general equation of the form:

Lu = f , (52)

The finite-element method consists of expanding the unknown, u, in a finite-element basis set
8. Thus,

u ≈ ũ =
N∑

j=1

uj8j (z) . (53)
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Figure 2. Schematic of multilayered system where the region 2 is saturated with water and region 4 is saturated
with oil. The oil saturation so varies in region 3.

Table 1. Thermal and dielectric properties for computations reported in this manuscript.

Material Cp (J kg−1 K−1) ρ (kg m−3) kT (W m−1 K−1) κ ′ κ ′′ λm (cm) Dp (cm)

Water 4186·51 1000 0·609 79·5 9·6 1·36 3·6
Oil 2093·26 934 0·168 2·0 0·15 8·64 36·7
Rock 1046·63 2650 0·076 2·8 0·196 – –

Beef – – – 43 15 1·70 1·80

In the Galerkins method, the error, Lũ − f , is set orthogonal to the basis functions, and

∫ 1
0 (Lũ − f )8idz = 0 for i = 1 . . . N . (54)

Integrating by parts, and incorporating boundary and interface conditions, we have that
Equation (54) results in a set of algebraic equations whose solution yields the unknown coeffi-
cients, uj , of the expansion. Since the dielectric properties are independent of temperature and
vary only spatially, the electric-field equations can be solved independent of the heat-transfer
equations for this case.

3. Results and Discussion

Table 1, lists the values of the dielectric and thermal properties used in this study. The litera-
ture sources for the properties are the following: Thermal and dielectric properties for water
and oil [10], thermal properties for rock [2], dielectric properties for rock [12, pp. 79] and
dielectric properties for beef [7]. For all the results illustrated in this manuscript we carry out
computations for the configuration shown in Figure 1, where the sample is surrounded by
free space. Fifty quadratic elements were used for the finite-element computations reported in
this manuscript. Initially we compared the series solutions along with the finite-element and
analytical solutions, primarily to test the robustness the series solutions. It is well known that
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Figure 3. Comparison of series (dashed line) and finite element (solid line) solutions for water with constant
dielectric properties.

alternating series, although convergent analytically, can be poorly behaved when evaluated
numerically [11, pp 368–378].

Figures 3 and 4 illustrate the series solutions along with the finite-element solution for
pure water and oil, respectively, with constant dielectric properties. For water (Figure 3) the
power was evaluated for samples with lengths varying from 0.5–7 cm. In this range the L/Dp

ratios vary from 0·138 to 1·94. In all situations the comparison is excellent; however the
series solution begins to deviate from the finite-element solution for sample lengths greater
than about 8 cm (L/Dp = 2·22). The behaviour in the case of oil (Figure 4) is similar and
the series solutions begin to deviate from the finite-element solution for lengths greater than
about 50 cm (L/Dp = 1·36). We also evaluated the solution for a high-loss material, with
properties typical of a meat sample. These results, shown in Figure 5 for beef, illustrate that
the series solution works well, even for L/Dp = 4·44.

Our tests with the series solutions illustrate that the convergence of the series solutions
improves and solutions at higher L/Dp ratios can be obtained for samples with greater loss
tangents. This is clearly observed for the meat sample (Figure 5) where the series solutions
work well into the Lambert–law regime, where the power decays exponentially into the sam-
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Figure 4. Comparison of series (dashed line) and finite element (solid line) solutions for oil with constant dielectric
properties.

Figure 5. Comparison of series (dashed line) and finite element (solid line) solutions for beef with constant
dielectric properties. The series solution works for L/Dp = 4·44, well into the regime where the absorbed power
can be approximated by Lambert’s law.
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Figure 6. Comparison of series (dashed) and finite-element solutions (solid) for a binary mixture of oil and water
assuming a linear variation in the dielectric properties, from pure water at z = 0 to pure oil at z = 1. The dotted
lines which represent the power distribution assuming a pure water sample indicate that the power absorption is
dominated by water as the sample thickness increases.

ple. The convergence of the series is significantly faster for smaller samples and the number
of terms that must be included in the series increases as the sample thickness is increased.
A maximum of 200 terms was used in the results presented. We also found that numerical
accuracy played an important role. For example, with double precision, the accurate solutions
were obtained only for L/Dp = 1; however, with quadruple precision accurate solutions could
be obtained for twice the sample lengths. Since we were able to obtain accurate solutions for
sample thicknesses where the Lambert–law regime can be used to predict the power, we did
not pursue other summation techniques that can potentially improve the accuracy of the series
summation [11, pp. 368–378].

Figure 6 illustrates the microwave power distributions for an oil-water mixture, where the
dielectric properties vary linearly within the sample, from pure water at z = 0 to pure oil
at z = 1. Since water is the strongly absorbing component, we also compared the power
distributions obtained for a pure water sample (dotted lines). The series solutions have been
compared with the finite-element solutions for L = 6 cm, above which the series solution
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Figure 7. Variation in dielectric properties in the three-phase system of oil, water and rock. The dielectric proper-
ties were obtained using Equation 11. First the dielectric properties are obtained for the oil-water mixture assuming
that oil forms the continuous phase. Next the dielectric properties of the three-phase system are obtained using the
dielectric properties of the oil-water mixture and treating rock as the continuous phase. The dashed line represents
the least-squares fit to the dielectric properties using a sixth-order polynomial. The coefficients for the fits are
c0 = 5·93733, c1 = −1·16605, c2 = 1·24631, c3 = −55·6798, c4 = 125·126, c5 = −100·437, c6 = 28·5056
for κ ′

2 and d0 = 0·437738, d1 = −0·0892565, d2 = 0·119878, d3 = −4·25507, d4 = 9·37469, d5 = −7·53119,
d6 = 2·12382 for κ ′′

2 .

begins to lose accuracy. It is interesting to note that a pure-water sample provides an excellent
approximation to the power distribution for larger samples. For smaller samples the agreement
at the incident face, where the absorption is dominated by water, is better. The presence of oil
contributes to the longer wavelengths of the absorbed power in the sample. At L = 6 cm
and above, although the absorbed power shows the same degree of decay into the sample, the
longer wavelength oscillations in the oil-water sample are clearly observed.

We next present electric-field and temperature distributions for the three-phase system of
oil, water and rock. If the dielectric properties of the rock and the oil-water mixture are used
and a porosity of 0·3 is assumed, the spatial variation of the dielectric properties as a function
of the sample length are given in Figure 7. The least-squares fit for the dielectric properties
using a sixth-order polynomial are also illustrated in the figure and the coefficients of the
polynomial are given in the figure caption. Since the dielectric properties of oil and rock
are significantly smaller than that of water (Table 1), the dielectric loss is quite low when
compared with that of water. In all the heating computations we have used a low-heat-transfer
coefficient of h = 2 W m−1 K−1.

Figures 8 and 9 illustrates the power distributions and temperature distributions for the oil,
water and rock system for samples of varying length. In all cases, excepting the L = 45 cm
case, the sample was heated for a period of 1 minute. We also compared the power distri-
butions and corresponding heating patterns for a linear variation in the dielectric properties
across the sample. We obtained the linear variation using the values of κ ′ and κ ′′ at the
boundaries of the sample (Figure 7). In addition, the power distributions for the L = 0·5 cm
and 4 cm samples obtained using the sixth-order polynomial fit (Figure 7) for the dielectric
properties are also illustrated. We were unable to obtain the series solution with the sixth-
order polynomial at larger sample widths due to poor convergence of the series. An excellent
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Figure 8. Power and temperature distributions for oil, water and rock system from the finite-element method. The
dashed lines are the power and temperature distribution obtained by assuming a linear variation in the dielectric
properties. In all cases the total heating time is one minute and temperature distributions are shown at intervals
of 20 s. The dotted lines represent power distributions obtained from the series solution using a sixth-order
polynomial to fit the dielectric properties shown in Figure 7.

match is observed between the power obtained from the finite-element solution and the series
solution for the sixth-order polynomial representation of the dielectric properties. The overall
magnitude of the absorbed power is similar to that observed in the pure oil samples (Figure 4).
In general, heating is seen to occur at the incident face of the sample due to the larger fraction
of water present. Since the saturation of water drops sharply beyond the midpoint of the
sample, the temperature distributions clearly reveal a preferential heating in the first half of
the sample. However, the low dielectric loss permits heating in the oil-rich regions, as well
for the smaller samples. At the largest sample studied (L = 45 cm), the power exponentially
decays into the sample and heating occurs mainly in the water-rich regions. The difference
between the power and temperature distributions and between the actual dielectric property
variation and the linear approximation is very good, with the least difference observed for the
largest sample studied. In these situations we can obtain the electric field independently using
a series solution.
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Figure 9. Power and temperature distributions for oil, water and rock system from the finite-element method. The
dashed lines are the power and temperature distribution are obtained by assuming a linear variation in the dielectric
properties. In all cases, excepting the L = 45 cm sample, the total heating time is one minute and temperature
distributions are shown at intervals of 20 s. For L = 45 cm the total heating time is 3 minutes and the temperature
distributions are shown at intervals of 1 minute.

4. Conclusion

We have studied the microwave-power and temperature distributions in samples with spatially
varying dielectric properties. Series solutions for the electric field are obtained for situations
where the spatial variation of the dielectric properties can be represented by a polynomial.
For more general functional forms the solution is obtained by a finite-element solution. The
series solution was used to obtain solutions for materials with constant properties and in
situations where a linear variation in the dielectric property was assumed. In situations where
the dielectric properties vary linearly the power absorption is dominated by the more absorp-
tive component. Our calculations show that for oil-water with a linear variation in dielectric
properties varying from pure water to pure oil across the sample, for samples whose thickness
exceeds about twice the penetration depth of water, the power distribution is similar to that
obtained for a pure-water sample.
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Computations where the oil saturation varies in a sigmoidal manner, similar to situations
during a water flood to displace oil, across the sample indicate that most of the power ab-
sorption occurs in the water-rich regions. In these situations the dielectric properties vary
nonlinearly across the sample, with the properties dominated by that of the rock, resulting in
a low-loss sample. In these cases we observe the power distribution and heating from a linear
variation in the dielectrics is very similar to that obtained using the exact nonlinear forms. Our
analysis indicates that, if the dielectric property variation can be represented by a polynomial,
the absorbed power can be accurately evaluated, provided the convergence of the series is not
a limiting factor.

Although we have analyzed a preliminary laboratory-scale model for microwave heating
in a porous rock containing oil and water, a complete engineering analysis would involve
investigating the effects of frequency, rate of heating, dynamical evolution of the front and its
effect on the overall increase in oil production at the length scales and saturation distributions
typically encountered during a water flood. These extensions are currently in progress.
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